Всем доброго времени суток! В прошлой статье я рассказывал о понижающих импульсных стабилизаторах постоянного напряжения. Данная статья продолжает рассказ об импульсных преобразователях, но уже другого типа, а именно, о повышающих преобразователях. Его выходное напряжение выше напряжения питания, что существенно отличает его от линейных стабилизаторов напряжения, в которых выходное напряжение не может быть больше входного.
Импульсный понижающий преобразователь напряжения
Всем доброго времени суток! Сегодня начнём серию статей об импульсных источниках питания. Широкое распространение данного типа источников питания связанно со стремлением уменьшить массогабаритные характеристики реактивных элементов: трансформаторов, дросселей и конденсаторов.
Основное отличие импульсных источников питания от линейных (или непрерывного действия) заключается в том, что регулирующий элемент, чаще всего транзистор, работает в ключевом режиме (режиме переключений). То есть большую часть периода работы находится в области отсечки или насыщения, а в активной зоне находится только в момент переключения. Следовательно, средняя за период мощность на рассеиваемая транзисторе будет значительно меньше, чем при работе в линейном режиме. Таким образом, импульсные источники питания по сравнению с линейными имеют более высокий КПД и меньшую массу и размеры.
Первым типом импульсного источника питания, который мы рассмотрим, будет, понижающий преобразователь напряжения.
Параметры трансформатора. Часть 1
Всем доброго времени суток! В прошлых статьях я рассказывал о тепловых расчетах при проектировании трансформатора. На тепловой режим трансформатора влияет множество параметров трансформатора электрические и электромагнитные. Для упрощения расчётов напряжений и токов в трансформаторе используют векторную диаграмму, которая является графическим изображением всех уравнений трансформатора на комплексной плоскости. Векторную диаграмму строят на основе эквивалентной схемы замещения и уравнений трансформатора.
Эквивалентная схема трансформатора
Для теоретического анализа трансформатора не очень удобно использовать реальные значения основных параметров трансформатора. Для этого используют приведённые параметры, которые характеризуют трансформатор в случае равенства числа витков N первичной w1 и вторичной w2 обмоток. Обычно приведение производится к первичной обмотке. Для перевода реальных параметров к приведённым, используется коэффициент трансформации k
Классификация трансформаторов
Всем доброго времени суток! В прошлой статье я рассказывал о расчёте дросселей переменного тока, особенностью которых является отсутствие постоянного тока подмагничивания. Такие дроссели широко применяются в преобразователях напряжения. Ещё одним электромагнитным устройством, применяемым в преобразовательной технике, является трансформатор, представляющий собой несколько дросселей объединённых общей магнитной цепью.
Кроме преобразовательной техники трансформаторы находят широкое применение в импульсной, усилительной и силовой электронике. Поэтому в зависимости от назначения и конструктивных особенностей трансформаторы разделяют не несколько категорий и типов.
В данной статье я расскажу о типах трансформаторов и об особенностях их конструкций.
Как рассчитать индуктивность катушек на разомкнутых сердечниках?
Если магнитное поле возникает в сердечнике, имеющем воздушный зазор lз сопоставимый с длиной магнитной силовой линии в сердечнике lc. То в нём возникает размагничивающее поле, противоположное основному. Данное поле характеризуется размагничивающим фактором N или коэффициентом размагничивания. Данный фактор зависит от формы и размеров самого сердечника. Для учёта размагничивающего фактора на магнитные свойства сердечника ввели понятие эффективной магнитной проницаемости сердечника μе, которая зависит от магнитной проницаемости вещества сердечника μr и размагничивающим фактором N.
Катушки индуктивности с малым воздушным зазором
В прошедших статьях я рассказывал о расчёте индуктивности катушек без сердечников и катушек с замкнутыми сердечниками. Сегодняшняя статья посвящена катушкам индуктивности на разомкнутых сердечниках. Такие сердечники можно разделить на два типа: сердечники с малым зазором (δ << a), где δ – величина зазора намного меньше а – любого линейного размера сердечника и сердечники с большим зазором (δ ≥ а), где величина воздушного зазора δ больше или сопоставима с линейными размерами сердечника а. В данной статье разберём сердечники с малыми зазорами.
Как рассчитать индуктивность катушек с замкнутыми сердечниками? Часть 2.
Всем доброго времени суток. В первой части я рассказал, как рассчитать индуктивность катушек с замкнутыми сердечниками тороидального и П-образного типа. Данная статья продолжает тему индуктивности катушек с замкнутыми сердечниками, здесь я расскажу о расчёте катушек с Ш-образными и броневыми сердечниками.
Как рассчитать индуктивность катушек с замкнутыми сердечниками?
В отличие от индуктивных элементов без сердечников, при расчёте которых учитывался магнитный поток пронизывающий только проводник с током, магнитный поток индуктивных элементов с сердечниками практически полностью замыкается на сердечники. Поэтому при расчёте индуктивности таких элементов необходимо учитывать размеры сердечника и материал, из которого он изготовлен, то есть его магнитную проницаемость. Для сердечников, имеющих сложную конструктивную конфигурацию, вводится понятие эффективных (эквивалентных) размеров, которые учитывают особенности формы сердечников: эффективный путь магнитной линии le и эффективная площадь поперечного сечения Se сердечника.
Расчёт индуктивности. Часть 3
В прошлых статьях я рассмотрел индуктивные элементы без сердечников, в частности, индуктивность прямого провода, индуктивность кольца и индуктивности различных типов круговых катушек. После этого можно было бы переходить к рассмотрению индуктивных элементов с сердечниками различной формы, однако существует ещё несколько типов катушек особой формы. Это, прежде всего, прямоугольные катушки и тороидальные катушки.