Всем доброго времени суток! В прошлой статье я рассказал о мультивибраторах, которые предназначены для генерирования прямоугольных импульсов. Но для этой, же цели применяются и другой тип генератора, который называется блокинг-генератором. Вообще же блокинг-генератор – это регенеративное устройство (генератор импульсов), основанное на однокаскадном усилителе, обратная связь в котором создаётся за счёт импульсного трансформатора.
Для сборки радиоэлектронного устройства можно преобрески DIY KIT набор по ссылке.
Основное предназначение блокинг-генераторов заключается в создании мощных коротких импульсов с крутыми фронтами и большой скважностью. В настоящее время они используются в импульсных блоках питания в качестве задающих генераторов
Так же как и мультивибратор, блокинг-генератор может работать в следующих режимах: автоколебательном, ждущем, синхронизации и деления частоты, но наиболее распространенным являются автоколебательный и ждущий режимы.
Автоколебательный блокинг-генератор
Как говорилось выше, автоколебательный блокинг-генератор является наиболее распространённым. Давайте рассмотрим его устройство и принцип работы на основе простейшей схемы, которая изображена ниже
Простейшая схема автоколебательного блокинг-генератора.
Простейший блокинг-генератор состоит из транзистора VT1 по схеме с общим эмиттером, трансформатора обратной связи Т1, демпфирующей цепи в виде диода VD1, времязадающей цепочки R2C1, базового резистора R1 и сопротивления нагрузки Rн.
Рассмотрим работу блокинг-генератора на основе временных диаграмм его работы, которые представлены ниже
Временные диаграммы работы блокинг-генератора.
Первая стадия (формирование фронта импульса) начинается в момент времени t0, то есть в момент включения питания либо по окончании периода предыдущего импульса. В этот момент транзистор оказывается заперт, а конденсатор С1 начинает заряжаться через резистор R2. По мере заряда конденсатора С1 увеличивается напряжение UBE на базе транзистора VT1, что приводит к постепенному открытию транзистора и возрастанию коллекторного тока IC. Возрастающий ток коллектора приводит к формированию ЭДС в трансформаторе и на его зажимах формируется возрастающее напряжение и ток пропорционально току коллектора транзистора VT1. Данная стадия заканчивается в момент времени t1, когда транзистор перешёл полностью в режим насыщения.
Вторая стадия (формирование вершины импульса) начинается в момент времени t1. После того как транзистор VT1 перешёл в режим насыщения на него уже мало влияет ток протекающий через базу транзистора, поэтому нарастание амплитуды импульса прекращается и начинает формироваться плоская вершина импульса. В данный период времени напряжение на зажимах трансформатора практически не изменяется, поэтому напряжение на коллекторе не изменяется, но так как происходит разряд конденсатора С1 уменьшается напряжение на базе транзистора VT1, а следовательно и ток базы Ib. По мере уменьшения тока базы Ib начинает уменьшаться ток коллектора IC, но вследствие индуктивного характера коллекторной нагрузки, начинает увеличиваться ток намагничивания трансформатора, а, следовательно, и коллекторный ток транзистора VT1, в результате напряжение на коллекторе остаётся постоянным некоторое время, которое зависит от параметров трансформатора Т1.
Третья стадия (формирование среза импульса) начинается в момент времени t2. В это время ток подмагничивания уменьшается и транзистор VT1 начинает закрываться под воздействием уменьшающегося тока базы Ib, вследствие разряда конденсатора С1. Когда транзистор полностью закроется коллекторный ток уменьшится практически до нуля и потенциал на выводах трансформатора Т1 также уменьшится, но вследствие этого в обмотках трансформатора возникнет ток обратный току коллектора IC и соответственно току базы Ib, что приведёт к ещё быстрейшему разряду конденсатора и образованию отрицательного всплеска напряжения на базе. Отрицательный импульс напряжения на базе транзистора VT1 ещё быстрее разрядит конденсатор, что уменьшит продолжительность среза импульса по сравнению с фронтом.
Четвёртая стадия (восстановление) начинается в момент времени t3. В это время транзистор находится в полностью закрытом состоянии. В этот период времени происходит рассеивание энергии в конденсаторе и трансформаторе, запасённой в третьей стадии работы блокинг-генератора. В этот период времени в трансформаторе могут возникать некоторые колебательные процессы (изменение напряжения до уровня UK max), что в общем случае нежелательны, поэтому для предотвращения этого параллельно коллекторной обмотке трансформатора включают различные демпфирующие цепи, в данном случае эту роль выполняет диод VD1.
Расчёт блокинг-генератора в автоколебательном режиме
Как любая электронная схема параметры работы блокинг-генератора полностью зависят от величин элементов составляющих схему, поэтому для расчёта необходимо задаться параметрами схемы.
Для расчёта блокинг-генератора обычно задаются следующими выходными характеристиками схемы: амплитуда импульсов Um, период прохождения импульсов Т, длительность импульса τi, сопротивление нагрузки RH.
Так как в настоящее время блокинг-генераторы очень часто используют в качестве задающих генераторов импульсных блоков питания, то для примера рассчитаем простейшую схему, на основе которой можно создать импульсный блок питания.
Зададим следующие параметры для расчёта: частота прохождения импульсов F = 50 кГц, скважность импульсов Q = 0,3, амплитуда выходных импульсов Um = 5 В, сопротивление нагрузки RH = 25 Ом, напряжение питания схемы ЕК = 310 В (выпрямленное сетевое напряжение).
1.Первым этапом расчёта является определение типа транзистора, как основного элемента схемы. Транзистор выбирается по следующим параметрам: максимально допустимое напряжение UCBmax, максимально допустимый ток коллектора ICmax и предельная частота fh21e.
где nH — коэффициент трансформации из коллекторной обмотки в обмотку нагрузки.
Примем IC = 0,02 А
Данным параметрам удовлетворяет транзистор MJE13001 со следующими характеристиками:
-
- тип транзистора: NPN;
- UCBmax = 600 В;
- UBЕmax = 7 В;
- ICmax = 0,2 А;
- ICBO = 10 мкА;
- fh21e = 8 МГц;
- h21e = 5…30;
- rb ≈ 200 Ом.
2.Определим величину сопротивления R1
Примем значение R1 = 390 Ом.
3.Рассчитаем параметры импульсного трансформатора. Коэффициент трансформации для выходной обмотки nH
Коэффициент трансформации для обмотки в цепи базы nB
где Ub – напряжение на базе транзистора VT1.
Выберем UB = 5 В. Тогда
Индуктивность коллекторной обмотки трансформатора
где ti – длительность импульса;
R’H – приведённое сопротивление нагрузки;
r’b – приведённое к коллекторной нагрузке сопротивление базы.
Определим длительность импульса и приведённые сопротивления
где rb – внутреннее объемное сопротивление базы. Тогда
Тогда индуктивность первичной обмотки будет равна
Примем С1 = 12 нФ
Сопротивление резистора R2
Примем R2 = 62 кОм.
5.В коллекторную цепь транзистора необходимо включать демпфирующую цепочку. Она позволяет ограничить всплески импульсов на трансформаторе, вследствие чего уменьшаются импульсные помехи и вероятность пробоя транзистора. В данном случае применена простейшая демпфирующая цепь в виде диода VD1, который должен удовлетворять следующим условиям
Данным параметрам удовлетворяет диод типа 1N4004.
Более подробно о демпфирующих цепях я расскажу, когда будем рассматривать индуктивные элементы и импульсные источники питания.
Теория это хорошо, но необходимо отрабатывать это всё практически ПОПРОБОВАТЬ МОЖНО ЗДЕСЬ