Всем доброго времени суток! Продолжаю рассказывать про импульсные устройства и всё, что с ними связано. В предыдущей статье я рассказывал про RC и RL цепи и как они влияют на прохождение через них различных импульсов. Сегодняшняя статья про амплитудные ограничители и фиксаторы уровня сигнала. Что же это такое и зачем они нужны?
Амплитудные ограничители. Введение
Амплитудный ограничитель представляет собой электронное устройство, которое имеет пороги ограничения, за пределами которых входной сигнал практически не изменяется и остаётся равным пороговому значению. Исходя из этого, можно выделить три типа амплитудных ограничителей:
Для сборки радиоэлектронного устройства можно преобрески DIY KIT набор по ссылке.
- ограничитель по максимуму или сверху. В данном случае сигнал на выходе устройства при превышении порогового значения тока или напряжения остаётся практически неизменным;
- ограничитель по минимуму или снизу. В таком устройстве устройства остаётся неизменным при значении входного сигнала меньше некоторого порогового значения;
- двухсторонний ограничитель. Такое устройство ограничивает сигнал и по максимуму и по минимуму входного сигнала.
Абсолютное большинство амплитудных ограничителей строят на основе ключевых свойств радиоэлектронных элементов, поэтому основным элементом ограничителей являются диоды или транзисторы в ключевом режиме работы. Диодные ограничители довольно простые по устройству, поэтому наиболее часто встречающиеся. Амплитудные ограничители на основе транзисторов несколько сложнее по устройству, но кроме амплитудного ограничения они позволяют усиливать сигнал, поэтому их ещё называют усилителями-ограничителями.
Различают также последовательные и параллельные ограничители. Эта их особенность зависит от способа включения ключевого элемента относительно нагрузки. Необходимо отметить, что последовательные ограничители включаются в работу, когда ключ разомкнут, а параллельные ограничители работают в режиме ограничения в случае замкнутого ключевого элемента.
Последовательные диодные ограничители
Как говорилось выше, ограничители бывают по максимуму, по минимуму и двухсторонние, которые ограничивают уровень сигнала сверху и снизу. Устройство последовательных диодных ограничителей довольно простое и оно основано на ключевом свойстве полупроводникового диода: в открытом состоянии диод пропускает электрический ток, а в закрытом – электрический ток через диод не проходит.
Последовательные диодные ограничители состоят из диода (VD1), источника смещения (ECM) и сопротивления нагрузки (R1). Различие состоит в том, как подключен диод: в ограничителе по минимуму диод включен в прямом направлении, а в ограничителе по максимуму – в обратном направлении.
Рассмотрим принцип работы ограничителя по минимуму. При значении входного напряжения UВХ меньше, чем напряжение смещения ЕСМ, диод VD1 будет находиться в закрытом состоянии и напряжение на выходе UВЫХ будет соответствовать напряжению смещения. Как только входное напряжение превысит напряжение смещения, диод откроется и через него начнёт проходить электрический ток, а напряжение на выходе будет соответствовать входному напряжению.
Схема и эпюры напряжения последовательного ограничителя по минимуму.
Принцип работы ограничителя по максимуму состоит в следующем. При значении входного напряжения UВХ меньше напряжения смещения диод VD1 находится в открытом состоянии и напряжение на выходе UВЫХ будет равным напряжению смещения. Как только входное напряжение превысит значение напряжения смещения, диод откроется и выходное напряжение будет равным входному напряжению.
Схема и эпюры напряжения последовательного ограничителя по максимуму.
Для ограничения сигналов сверху и снизу используются двухсторонние ограничители, которые чаще всего состоят из двух последовательно включённых односторонних ограничителей.
Схема двухстороннего последовательного ограничителя и эпюры напряжения.
Принцип работы двухстороннего ограничителя заключается в следующем. Напряжение источников смещения выбирают так, чтобы в отсутствии входного сигнала диод VD2 был открыт (ЕСМ1 < ЕСМ2). Уровень ограничения напряжения по максимуму определяется напряжением смещения ЕСМ2, а уровень ограничения по минимуму – напряжением в точке соединения диодов VD1 и VD2, которое соответствует напряжению отпирания диода VD1. Диод VD1 открывается, когда напряжение на входе превышает величину напряжения ЕСМ1. При этом напряжение на выходе ограничителя примерно равно напряжению на входе, а когда входное напряжение превышает величину ЕСМ2, то диод VD2 закрывается и напряжение на выходе будет равно напряжению ЕСМ2.
Довольно часто вместо предыдущей схемы используется эквивалентная схема двухстороннего ограничителя с общим источником смещения.
Схема двухстороннего последовательного ограничителя с общим источником смещения.
Расчёт данной схемы аналогичен предыдущей, если пересчитать её параметры с помощью следующих соотношений:
Расчёт последовательных диодных ограничителей
Простейший последовательный диодной ограничитель представляет собой схему, состоящую из диода VD1, включённого последовательно с резистором R1. Данная схема в отсутствии дополнительного источника напряжения смещения Есм является ограничителем с нулевым уровнем ограничения. Фактически данная схема представляет собой диодный ключ, вследствие конечных значений сопротивления закрытого и открытого ключа, данную схему можно преобразовать в делитель напряжения на резисторах, а выходное напряжение тогда определится по следующей формуле:
- где UBX – входное напряжение,
- R1 – сопротивление нагрузки,
- RVD – сопротивление диода в прямом направлении.
В случае использования дополнительного источника напряжения смещения выходное напряжение определится по следующей формуле:
- где Есм – напряжение смещения.
Из вышесказанного можно сделать вывод, что при сопротивлении нагрузки R1 >> RVD, то есть чем больше сопротивление нагрузки R1 по отношению к сопротивлению диода в прямом направлении, тем больше напряжение на выходе соответствует входному напряжению.
Параллельные диодные ограничители
Так же как и последовательные диодные ограничители, параллельные диодные ограничители бывают по максимуму, по минимуму и двухсторонние. Основное отличие в принципе работы параллельных ограничителей от последовательных ограничителей состоит в том, что параллельные пропускают сигнал, когда диод находится в закрытом состоянии, и ограничивают, когда диод открыт.
Параллельные диодные ограничители в основном состоят из следующих элементов: источник напряжения смещения ЕСМ служит для установки уровня ограничения, сопротивление R1 создает вместе с диодом VD1 делитель напряжения и непосредственно диод VD1 выполняет роль ключевого элемента. Различие между ограничителями сверху и снизу, как уже говорилось выше, состоит в том, как подключен диод.
Рассмотрим схему и принцип работы параллельного ограничителя по минимуму. При значении входного напряжения UВХ меньше, чем напряжение смещения ЕСМ, диод VD1 будет находиться в открытом состоянии, а так как R1 и сопротивление диода в открытом состоянии невелико, то всё напряжение будет оставаться на сопротивлении R1, а на выходе напряжение UВЫХ будет равно сумме напряжений ЕСМ и падению напряжения на диоде. Как только входное напряжение превысит напряжение смещения, диод закроется и так как сопротивление диода в закрытом состоянии очень велико, то на выходе ограничителя будет напряжение равное входному напряжению.
Схема и эпюры напряжения параллельного ограничителя по минимуму.
Принцип работы параллельного ограничителя по максимуму отличается от параллельного ограничителя по минимуму только направлением включения диода. Таким образом, при входном напряжении UВХ меньшем напряжении смещения ЕСМ диод будет закрыт и всё входное напряжение будет приложено к нагрузке. Как только входное напряжение превысит значение равное сумме напряжения смещения и напряжения падения на диоде, то диод откроется, и напряжение на выходе останется равным сумме напряжения смещения и напряжения падения на диоде.
Схема и эпюры напряжения параллельного ограничителя по максимуму.
Как говорилось выше, существуют также двухсторонние ограничители параллельного типа, которые представляют собой последовательно соединенные параллельные ограничители по минимуму и по максимуму. По принципу работы двухсторонние ограничители аналогичны односторонним ограничителям, но в этом случае резистор R1 является общим для двух последовательно включенных ограничителей.
Схема и эпюры напряжения параллельного двухстороннего ограничителя.
Расчёт параллельных диодных ограничителей
Простейший параллельный диодный ограничитель представляет собой схему состоящую из диода VD1, включённого параллельно нагрузке и ограничительного резистора R1. В отсутствии источника напряжения смещения Есм данная схема является амплитудным ограничителем с нулевым уровнем ограничения. Как и схема с последовательным диодом, данную схему можно представить в виде делителя напряжения на резисторах, в которой выходное напряжение будет равно:
- где UBX – входное напряжение,
- R1 – ограничительный резистор,
- RVD – сопротивление диода в обратном направлении.
В случае использования дополнительного источника напряжения смещения выходное напряжение определится по следующей формуле:
- где Есм – напряжение смещения.
Из вышесказанного можно сделать вывод, что при сопротивлении нагрузки R1 << RVD, то есть чем меньше ограничительное сопротивление по отношению к сопротивлению диода в обратном направлении, тем напряжение на выходе больше соответствует входному напряжению.
Амплитудные ограничители находят самое широкое распространение в импульсных схемах и могут выполнять следующие функции:
Теория это хорошо, но необходимо отрабатывать это всё практически ПОПРОБОВАТЬ МОЖНО ЗДЕСЬ