Всем доброго времени суток. В прошлой статье я рассказывал о методах расчёта электрических цепей, в которых основным элементом является резистор. Резистор представляет собой один из элементов с сосредоточенными параметрами, в данном случае таким параметром является сопротивление. Однако кроме сопротивления ещё одними из основных параметров элементов цепи являются ёмкость и индуктивность, которые представлены элементами конденсатор и индуктивными элементами (различные дросселя, катушки, трансформаторы и т.д.). В данной статье я рассмотрю такой элемент с сосредоточенными параметрами, как конденсатор.
Для сборки радиоэлектронного устройства можно преобрески DIY KIT набор по ссылке.
Проводник в электрическом поле
Помещая проводник в электрическое поле, носители заряда внутри проводника начинают перемещаться. Причем данное перемещение подчиняется двум правилам:
-
Напряжённость электрического поля внутри проводника должно равняться нулю
Это означает, что потенциал внутри проводника остается постоянным (φ = const).
- Напряжённость поля на поверхности проводника направлена перпендикулярно к самой поверхности данного проводника. Или другими словами поверхность проводника становится эквипотенциальной, то есть все точки данной поверхности имеют одинаковый потенциал.
Из этих двух правил следует, что когда проводник вносится в электрическое поле его носители заряда (в металлах это электроны, а в жидкостях – ионы) приходят в движение, причем положительные по направлению напряжённости электрического поля, а отрицательные в противоположную сторону. Результатом движения зарядов в проводнике является возникновение зарядов противоположного знака на концах проводника, такие заряды называют индуцированными. Перераспределение заряда в проводнике показано на рисунке ниже
Распределение носителей зарядов проводника в электрическом поле.
Таким образом, нейтральный проводник, помещённый в электрическое поле, как бы разрывает часть линий электрического поля, а индуцированные заряды распределяются по поверхности проводника.
Практический интерес представляет следующая ситуация, когда внутри проводника имеется некоторая полость. Так как индуцирование зарядов происходит на поверхности проводника, то внутри этого проводника, а значит и во внутренней полости электрическое поле обращается в нуль. На данном явлении основана электростатическая защита, когда необходимо защитить какой-нибудь прибор от воздействия электрического поля, то его помещают внутрь экрана из проводника. Индуцированные заряды на поверхности экрана скомпенсируют электростатическое поле. Вместо сплошного экрана часто используют экран из электропроводящей сетки, что тоже позволяет создать защиту от электростатического поля.
Электроемкость
Если на проводник переместить некоторый заряд q, то он как мы уже знаем, распределится по всей поверхности проводника, так чтобы напряженность электрического поля внутри него была равна нулю. Однако относительно любой точки пространства данный проводник будет обладать некоторым потенциалом φ. Если на данный заряженный проводник переместить ещё один заряд, то опять же он равномерно распределится по всей поверхности проводника, а величина потенциала вырастит на некоторую величину.
Таким образом, между величиной заряда проводника и его потенциалом существует связь, которая определяется следующим выражением
где q – величина заряда, сообщенная проводнику,
φ – потенциал проводника относительно любой точки пространства,
С – коэффициент пропорциональности, называемый электроемкостью проводника, или просто емкостью.
Исходя из этого, электроемкость проводника может быть вычислена из следующего выражения
Таким образом, электроемкость численно равна заряду, передача которого проводнику повышает его потенциал на единицу. Единица измерения электроемкости называется Фарада (обозначается Ф).
Однако емкость уединенного проводника невелика, так емкостью в 1 Ф обладает шар радиусом 9*109 м, что почти в 1500 раз больше радиуса Земли. Поэтому на практике используют специальные устройства для накопления зарядов и обладающие большой емкостью при минимальных размерах. Такие устройства называются конденсаторами.
Конденсаторы
Принцип действия конденсатора основывается на явлении индуцирования зарядов на проводнике в электрическом поле или на свойстве диэлектрика поляризоваться под воздействием электрического поля, а также возрастания электроемкости проводника при приближении к нему других тел. Рассмотрим подробнее.
Как известно из предыдущего параграфа, что если к заряженному телу, вокруг которого существует электрическое поле поднести проводник, то на поднесенном проводнике начнут индуцироваться заряды, в результате чего потенциал заряженного проводника будет уменьшаться, а, следовательно, электроемкость возрастать. Поэтому конденсаторы делают в виде двух близкорасположенных проводников, называемых обкладками конденсатора.
Чтобы ограничить влияние посторонних предметов на электрическое поле конденсатора, а следовательно и его емкость, обкладки изготавливают такими, чтобы электрическое поле создаваемое ими было полностью сосредоточенно внутри конденсатора. Такому условию соответствуют плоские, цилиндрические и сферические конденсаторы.
Так как обкладки расположены очень близко, то практически весь заряд обкладок будет сосредоточен на их внутренних поверхностях, то есть обращённых друг к другу, поэтому емкость конденсатора будет определяться следующим выражением
где q – заряд одной из обкладок конденсатора,
φ1 и φ2 – потенциалы обкладок конденсатора.
Самым простым является плоский конденсатор, его мы и рассмотрим в качестве примера.
Плоский конденсатор
Плоский конденсатор представляет собой две одинаковые пластины площадью S, расположенные параллельно, расстояние между пластинами d очень незначительно по отношению к размерам самих пластин, поэтому практически всё электрическое поле сосредоточенно между пластинами-обкладками. Кроме этого между пластинами расположен диэлектрик, который имеет диэлектрическую проницаемость ε, зависящую от свойств диэлектрика.
Плоский конденсатор.
Тогда разность потенциалов между обкладками конденсатора будет определяться следующим выражением
где S – площадь обкладки конденсатора,
d – расстояние между обкладками,
ε0 – электрическая постоянная, ε0 = 8,85 * 10-12 Кл2/(Н*м2),
ε – относительная диэлектрическая проницаемость диэлектрика, зависящая от его свойств.
Тогда емкость плоского конденсатора будет определяться по следующей формуле
На этом с физикой, пожалуй, закончим и приступим к электронике.
Реальный конденсатор
В прошлой статье я рассказал об идеальных элементах электрических схем (я рассматривал сопротивление, как идеальный резистор). Идеальный элемент конденсатор отличается от реального конденсатора наличием паразитных характеристик, для определения этих характеристик рассмотрим эквивалентную схему реального конденсатора изображённую ниже
Эквивалентная схема замещения конденсатора.
Кроме непосредственно емкости конденсатора можно выделить следующие параметры, которые являются паразитными и в некоторых схемах не позволяют использовать конденсаторы некоторых типов. Таким параметрами являются сопротивление утечки Rут, эквивалентное последовательное сопротивление RЭПС (или ESR) и эквивалентная последовательная индуктивность LЭПИ (или ESL). Разберём каждый параметр в отдельности.
Сопротивление утечки Rут конденсатора определяется как отношение постоянного напряжения, до которого заряжен конденсатор Uc к току утечки Iут
эквивалентную схему реального конденсатора изображённую ниже
Ток утечки существует в любом случае, так как сопротивление изоляции и диэлектрика не может быть бесконечным. Вследствие этого заряженный конденсатор с течением времени теряет некоторый заряд. Поэтому часто в документации на конденсаторы вводится параметр постоянная времени саморазряда конденсатора Т = RутС0.
Современные высококачественные конденсаторы имеют постоянную времени саморазряда несколько сотен тысяч часов.
Эквивалентное последовательное сопротивление RЭПС или ESR довольно важный параметр в некоторых схемах, в частности, в схемах выпрямления импульсных блоков питания и стабилизаторах напряжения. Связан с непосредственным сопротивлением обкладок конденсатора и его выводов, а также с потерями в диэлектрике. Довольно часто служит показателем исправности конденсатора и для его измерения используют приборы ESR-метры.
Эквивалентная последовательная индуктивность LЭПИ или ESL, данный параметр обусловлен, прежде всего, индуктивностью обкладок конденсатора и его выводов. Данный паразитный параметр вместе с емкостью конденсатора образует последовательный колебательный контур с собственной частотой резонанса. Поэтому для конденсаторов нормируется максимальная частота работы.
Тангенс угла потерь конденсатора tgδ характеризует работу конденсатора при переменном напряжении. В идеальном конденсаторе, в котором отсутствуют паразитные параметры tgδ = 90°. Но в реальных конденсаторах часть энергии рассеивается на сопротивлении обкладок и в диэлектрике, то есть на RЭПС вследствие чего tgδ отличается от 90° в меньшую сторону. Тангенс угла потерь вычисляется по следующему выражению
В следующих статьях я расскажу о работе конденсаторов при переменном напряжении, где проявляются основные свойства данного электронного компонента.
Теория это хорошо, но необходимо отрабатывать это всё практически ПОПРОБОВАТЬ МОЖНО ЗДЕСЬ