ElectronicsBlog

Обучающие статьи по электронике

Соединение элементов в цепи переменного напряжения и тока

Всем доброго времени суток! В прошлой статье я рассказал о воздействии переменного напряжения на элементы цепи (сопротивление, индуктивность и ёмкость) и воздействие этих элементов на напряжение, ток и мощность. В данной статье я расскажу о последовательном и параллельном соединении элементов цепи и воздействии на такие цепи переменного напряжения и тока.

Для сборки радиоэлектронного устройства можно преобрески DIY KIT набор по ссылке.

Последовательное соединение элементов цепи при переменном напряжении

Начнём с последовательного соединения сопротивления R, индуктивности L и ёмкости C и рассмотрим воздействие на неё переменного напряжения с частотой ω.

последовательное соединение
Последовательное соединение элементов цепи.

В данной цепи входное переменное напряжение U в соответствии со вторым законом Кирхгофа будет равно алгебраической сумме переменных напряжений на отдельных элементах

где UR, UL, UC – напряжение на элементах цепи, сопротивлении R, индуктивности L и ёмкости С, соответственно,

Im­ – амплитудное значение переменного тока.

Графическое изображение напряжений и токов на последовательно соединённых элементах цепи представлено ниже

Напряжения и токи при последовательном соединении
Напряжения и токи при последовательном соединении.

Итоговое выражение является тригонометрической формой записи второго закона Кирхгофа для мгновенных напряжений и его можно переписать в виде

где R – активное сопротивление,

Х – реактивное сопротивление.

Значение активного сопротивления R всегда только положительно, а реактивное сопротивление Х может принимать, как положительное значение Х > 0, тогда оно имеет индуктивный характер, так и отрицательное значение X < 0, в этом случае реактивное сопротивление имеет ёмкостный характер.

В случае же нулевого значения реактивного сопротивления, имеет место резонанс напряжений

В этом случае сопротивление цепи представлено только активной нагрузкой R, а следовательно сдвиг фаз между напряжением и током будет нулевым.

При расчётах нас интересует не столько ток и напряжение на отдельных элементах, сколько ток и напряжение всей цепи. Для этого продолжим преобразовывать напряжение

где Z – полное сопротивление цепи,

ψ – разность фаз между напряжением и током.

Таким образом, амплитудное значение напряжения Um и амплитудное значение тока Im связаны между собой следующим соотношением

где Um­ – амплитудное значение переменного напряжения,

Im­ – амплитудное значение переменного тока,

Z – полное сопротивление цепи.

Параллельное соединение элементов цепи при переменном напряжении

Теперь рассмотрим параллельное соединение элементов цепи (сопротивления, индуктивности и ёмкости) и прохождение по ним переменного тока.

Параллельно соединение элементов цепи
Параллельно соединение элементов цепи.

Подадим на вход такой цепи переменное напряжение U, тогда электрический ток в цепи I, в соответствии с первым законом Кирхгофа, будет равняться алгебраической суммы токов проходящей через элементы цепи

IR, IL, IC – токи в элементах цепи, сопротивлении R, индуктивности L и ёмкости С, соответственно,

Um­ – амплитудное значение переменного тока.

Графическое изображение напряжений и токов в параллельно соединённых элементах цепи представлено ниже

Напряжение и токи при параллельном соединении
Напряжение и токи при параллельном соединении.

Аналогично второму закону Кирхгофа, для первого закона также существует тригонометрическая форма записи, которая соответствует получившемуся выражению. Выполним ещё одно преобразование данного выражения

где g – активная проводимость, b – реактивная проводимость.

Как видно из формулы, реактивная проводимость может быть положительной b > 0, тогда она имеет индуктивный характер, а может быть отрицательной b < 0, тогда реактивная проводимость имеет ёмкостный характер. А активная проводимость может быть только положительной.

Отдельный случай представляет собой реактивная проводимость равная нулю, то есть в этом случае проводимость индуктивности и ёмкости одинаковы

Такой случай называется резонансом токов, в этом случае общая проводимость будет определяться только активной проводимостью, а сдвиг фаз между напряжением и током в цепи будет нулевым.

Определим зависимость между напряжением и силой тока в параллельной цепи

где y – полная проводимость,

ψ – разность фаз между напряжением и током в цепи.

Тогда зависимость между напряжением и током в цепи с параллельно соединёнными элементами будет иметь вид

где Um­ – амплитудное значение переменного напряжения,

Im­ – амплитудное значение переменного тока,

y – полная проводимость цепи.

Чему равна мощность в цепи при синусоидальном напряжении?

Мощность является основной энергетической характеристикой, поэтому рассмотрим мощность в цепи переменного напряжения. Мгновенная мощность в цепи будет равна

Как видно из получившегося выражения, мгновенная мощность состоит из постоянной составляющей UIcos(φ) и переменной составляющей UIcos(2ωt – φ), изменяющейся с удвоенной частотой по сравнению с частотой напряжения (тока).

Теперь определим среднее значение мощности за период или активную мощность, которая будет равна

где U – действующее значение переменного напряжения,

I – действующее значение переменного тока,

cos(φ) – коэффициент мощности.

Таким образом, активная мощность в цепи переменного напряжения (тока), равна произведению действующих значений напряжения и тока на коэффициент мощности.

При разработке и проектировании цепей переменного напряжения стараются сделать коэффициент мощности как можно больше, в идеале должен быть равен единице cos(φ) = 1. При небольших значениях данного коэффициента для создания в цепи необходимой мощности Р необходимо повышать величину напряжения U (тока I).

Теория это хорошо, но необходимо отрабатывать это всё практически ПОПРОБОВАТЬ МОЖНО ЗДЕСЬ